Distribuciones simétricas o no asimétricas
A medida que los datos se vuelven más simétricos, el valor de su asimetría se acerca a cero. La figura A muestra datos distribuidos normalmente, que por definición exhiben relativamente poca asimetría. Al dibujar una línea por el medio de este histograma de datos normales, se puede ver fácilmente que un lado es el reflejo del otro. Pero la falta de asimetría por sí sola no implica normalidad. La figura B muestra una distribución en la que ambos lados siguen siendo un reflejo el uno del otro, a pesar de que la distribución de los datos dista mucho de ser normal.
A B
En distribuciones unimodales, el nivel de simetría se suele describir de acuerdo a tres grandes categorías: distribuciones simétricas, distribuciones asimétricas positivas (o sesgada a la derecha) y distribuciones asimétricas negativas (o sesgada a la izquierda). Tomando como eje de referencia a la moda, estas categorías de asimetría vienen definidas por el diferente grado de dispersión de los datos a ambos lados (colas) de ese eje virtual. La cola más dispersa en el lado de los valores altos de la variable caracteriza a la asimetría positiva; si en el lado de los más bajos, a la asimetría negativa; y si la dispersión es igual o muy similar a ambos lados, a una distribución de frecuencias simétrica.
Asimetría positiva y negativa
En caso de asimetría, los valores de la media, mediana y moda difieren. En concreto si la asimetría es positiva: media>mediana>moda. Si la asimetría es negativa: media<mediana< moda.
Distribuciones asimétricas positivas o hacia la derecha
Fuente de informaciòn https://support.minitab.com/es-mx/minitab/18/help-and-how-to/statistics/basic-statistics/supporting-topics/data-concepts/how-skewness-and-kurtosis-affect-your-distribution/
http://www.mat.uda.cl/hsalinas/cursos/2011/2do/clase2.pdf
Escribe tu comentario